(3x/(x^2-4))-1/x^2

Simple and best practice solution for (3x/(x^2-4))-1/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x/(x^2-4))-1/x^2 equation:


D( x )

x^2-4 = 0

x^2 = 0

x^2-4 = 0

x^2-4 = 0

1*x^2 = 4 // : 1

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:-2) U (-2:0) U (0:2) U (2:+oo)

(3*x)/(x^2-4)-(1/(x^2)) = 0

(3*x)/(x^2-4)-x^-2 = 0

(3*x)/(x^2-4)-1/(x^2) = 0

(3*x*x^2)/(x^2*(x^2-4))+(-1*(x^2-4))/(x^2*(x^2-4)) = 0

3*x*x^2-1*(x^2-4) = 0

3*x^3-x^2+4 = 0

3*x^3-x^2+4 = 0

3*x^3-x^2+4 = 0

{ 1, -1, 2, -2, 4, -4 }

1

x = 1

3*x^3-x^2+4 = 6

1

-1

x = -1

3*x^3-x^2+4 = 0

-1

x+1

3*x^2-4*x+4

3*x^3-x^2+4

x+1

-3*x^3-3*x^2

4-4*x^2

4*x^2+4*x

4*x+4

-4*x-4

0

3*x^2-4*x+4 = 0

DELTA = (-4)^2-(3*4*4)

DELTA = -32

DELTA < 0

x in { -1}

x+1 = 0

(x+1)/(x^2*(x^2-4)) = 0

(x+1)/(x^2*(x^2-4)) = 0 // * x^2*(x^2-4)

x+1 = 0

x+1 = 0 // - 1

x = -1

x = -1

See similar equations:

| 2x+2(x-4)=3x | | 25a^2-15=2a | | 9r+4=29r+9 | | 14+2r=20 | | h=12+15t+-16t^2 | | 7x-7-4x=4x-4 | | (a^2+b^2)(a+b)=0 | | x+(4x-5)=125 | | (8x+6)(-4x-6)=0 | | 30/7.5 | | h=12+15t+16t^2 | | 14b=10 | | 4x-1-3=x-11 | | 3+p=3.1 | | 2(3a+b)=h | | 9x=14+17x | | 55x+20(72x+36y)=200 | | X-2/5=-1/6 | | C=4c-8 | | -2x-9=7x+9 | | (m^3+3)(5m+n)=0 | | -8/3a=24 | | 2x^2+8x-64=1080 | | 3x^2+x^2=200 | | 3x^2(x^2)=200 | | 4(2a-3)-2(a-4)=3(a-3)-1 | | 3+4+x=1+6 | | 6(y-5)=z(10+3y) | | 5x+11y+1z=57.73 | | 15x+13=3x-19 | | X-5c=8 | | .75a+14=18 |

Equations solver categories